Building Lifelike Humanoid (and Non-Humanoid) Characters

Katsu Yamane kyamane@disneyresearch.com

Physical Characters in Theme Parks

Interactive/close ←

Scripted/remote

Meet and greet

Queue line

Attraction

Show

Building "Useless" Robots

Difficult to quantify the goal

Technology must be transparent to users

Technology must be used to tell stories

Requires human (anthropomorphic) form

Less environmental constraints

Lifelike Characters

Talk Outline

Talk Outline Motion Interaction Reactive and safe Style and personality Design Size and shape

Motion

Style and personality

Motion

Style and personality

Created by animators (expensive)

No real locomotion/manipulation

Human to Humanoid Motion Retargeting

Already have style and personality but ...

Different kinematics and dynamics

Different actuators

Different constraints

Joint motion range

Joint velocity/acceleration limits

Joint torque limits

Contacts

Human to Humanoid Motion Retargeting

[Mistry, Murai, Yamane, Hodgins 2010]

Human to Humanoid Motion Retargeting

[Yamane, Anderson, Hodgins 2010]

Human to Non-humanoid Motion Retargeting

Human to Non-humanoid Motion Retargeting

[Yamane, Ariki, Hodgins 2010]

Gaussian process latent variable model (GPLVM) [Lawrence 2003]

Shared GPLVM [Ek et al. 2007]

Results: Emotional Motions

[Yamane, Ariki, Hodgins 2010]

Design Size and shape

Design Size and shape

Size/shape constraints

Untethered

Lots of manual work

[Batts, Kim, Yamane 2016]

Linear Elastic Actuator in Parallel (LEAP)

Voice coil

1D Testbed

Stiffness optimization

Lifelike Characters

Interaction

Reactive and safe

Teleoperation (expensive)

No physical interaction

Safe Autonomous Interaction: Playing Catch

[Kober, Glisson, Mistry 2012] [Carter et al. 2014]

Safe physical interaction between guests and robot

Uses existing Audio-Animatronic Figure and controller

Reaction to ball drop with social gestures

System Setup

Optional subtitle

Robot

- All gestures are hand-coded and invoked based on ball trajectory
- Lookup table for arm inverse kinematics

Stereo cameras

- Kalman filter to smooth trajectory in flight
- Predict catching location

Questionnaire: more responsive, engaging, and humanlike when the robot displayed gestures

Smile detection: more smiles when the robot displayed gestures

Long-term study necessary to address novelty effect

Juggling with Trained Users

[Kober, Glisson, Mistry 2012]

Lifelike Characters

[Song, Kim, Yamane 2015]

Maya model→kinematics, shape

Maya animation→number of joints, range of motion and torque

original animation

target motion

optimized motion

optimized walking on hardware

Lifelike Characters

[Yamane, Revfi, Asfour 2013]

Quick and natural adaptation to human motion

Learn from human-to-human handover

Human-to-Human Handover

[Yamane, Revfi, Asfour 2013]

Passer starts moving the object

Receiver recognizes the intention and starts reaching out

Passer and receiver implicitly agree on handover position

Receiver grasps the object

Passer releases the object

Human-to-Robot Handover

[Yamane, Revfi, Asfour 2013]

Passer starts moving the object

Robot recognizes the intention and starts reaching out

Passer and robot implicitly agree on handover position

Robot grasps the object

Passer releases the object

[Yamane, Revfi, Asfour 2013]

Similar motions in similar situations

Relative orientation and distance

Object/grasp type

Predict the receiver's pose from the passer's with database

Database of human-to-human handover motions

Search observed human motion within the passer motion database

Database of human-to-human handover motions

Synthesize robot motion based on the corresponding receiver motion

Search observed human motion within the passer motion database

Database of human-to-human handover motions

"Face-to-face" dataset (3 objects, 1686 frames, 10 layers)

"Side-by-side" dataset (2 objects, 863 frames, 9 layers)

Simulation: Synthesis from Test Data

[Yamane, Revfi, Asfour 2013]

Tape
Bottle

Hardware Implementation

[Yamane, Revfi, Asfour 2013]

Lifelike Characters

Bearbot

- Soft body for impact reduction and force sensing
- 3D printed air-filled modules with pressure sensor
- Fits an animation character's shape

3D-Printed Air-Filled Module

[Kim, Alspach, Yamane 2015]

Future Direction

Questions?

kyamane@disneyresearch.com

