Efficient Humanoid Navigation through Cluttered 3D Environments

Maren Bennewitz

Joint work with P. Karkowski, S. Oßwald, and P. Regier

Robots in Human Environments

Need to navigate through challenging passages with

- Objects blocking the path
- Highly cluttered regions
- Different levels
- Dynamic obstacles

Requirements

- Fast sensor data interpretation
- Real-time footstep planning
- Reactive balance and dynamic walking control

Our Approach

- Fast traversability analysis from depth data
- Avoidance of local minima by finding complete 3D footstep plans to local goals
- Real-time planning and replanning in case of sudden changes
- Only low CPU usage

Related Work

- Footstep planning using rapidly-exploring random trees (RRTs), e.g., Baudouin et al.
- Mixed integer optimization on convex regions, e.g., Deits et al.
- A* footstep planning using fixed footstep sets, e.g., Hornung et al., Chestnutt et al.

- Uses a set of footstep actions to reduce the computational demand
- Standard approach: fixed set of actions

start

Small set \rightarrow fast planning limited search space

Large set $\rightarrow \frac{\text{large coverage}}{\text{long planning time}}$

Adaptive Node Expansion

Our approach:

- Add only a small set of nodes at each expansion step
- Systematically search for valid successors
- Apply fast validity checks using height information
- Leads to a high success rate, short paths, and fast planning times

Field of View

Planar Region Segmentation

Finding Edges

World Representation

Karkowski et al., ICRA 2016

Reachability Map for Footsteps

- Discretization of feasible footsteps
- Reachability map can be precomputed using inverse kinematics
- Maximum displacement from the previous step, depending on the displacement direction
- Maximum displacement along the upward and downward directions

Reachability Map

A* with an Adaptive Action Set

- Local search around maximum forward step
- Validity checks:
 - Footstep feasible according to the reachability map?
 - Footstep on a planar region?
 - Later: No collision of the robot's swept volume with obstacles?
- Result: set of viable successor states that adapt to the local environment

Experiments

- Planning area of 2.4m x 2.4m, randomly generated obstacles
- Resolution of 1.5cm for the height map
- Local goal located at the opposite side on the map
- Comparison to A* with fixed sets of 10 and 20 footsteps
- Computations performed on single Intel Core i7 3770 CPU

Example Map

Example Map

Planning times

Total path costs

Further Examples

Experimental Results

Map 1	A* (small)	A* (large)	Our approach
Planning Time	85.7 ms	60.3 ms	14.3 ms
Path Cost	7.6	4.0	3.7
Expanded Nodes	28260	13835	1516

Map 2	A* (small)	A* (large)	Our approach
Planning Time	67.2 ms	75.0 ms	48.7 ms
Path Cost	6.9	5.0	4.3
Expanded Nodes	22374	16805	5852

Real-Time Footstep Planning

Karkowski et al., Humanoids 2016

Real-Time Footstep Planning 2D

Navigation through Cluttered Regions

Typically, objects appear in clusters:

- Children's rooms with toys on the floor
- Workshops with tools lying around
- Storage rooms with piles of boxes

Challenges

- Accurate sensing of obstacles
- Precise motion execution
- Obstructed view of the sensor

Navigation through Cluttered Regions

Leads to

- Decreased velocity
- Frequent turns
- Potentially getting stuck

Our Approach

- Choose efficient paths by avoiding regions predicted to be too cluttered
- Predict the occurrence of objects beyond observed areas
- Estimate navigation costs corresponding to potential obstacles to navigate foresightedly
- Achieve shorter completion time of navigation tasks

Occupation Density and Costs

- Estimate occupation densities for
 2D grid cells based on observed objects
- Increase the traversal costs for cells in close-by regions that are not yet visible
- Plan the robot's global 2D path on a cost grid map that contains:
 - Standard inflation costs around obstacles
 - Predicted costs from estimated occupation densities

Estimated Occupation Density

Estimate the density ρ inside circle

$$\rho = \frac{\# \text{ occupied cells}}{\# \text{ cells}}$$

$$\rho = \sum_{j=1}^{3} w_j \rho_j, \text{ where } w_j = e^{-R_j}$$

predicted navigation costs: $C_{predict} = \alpha \cdot \rho$

Cost Grid Map

So far: Tested on Wheeled Base

localization

Foresighted Navigation

Regier et al., IROS 2016

Experimental Evaluation

- Extensive simulation experiments
- Randomly sampled objects within a rectangular area of size 23 × 8 m²
- Obstacle density as a parameter: average number of objects per 1 m²

Simulation Result

w/o prediction

with prediction

Results

- The behavior is different when the clutter
 - is sparse enough for the robot to fit through
 - but dense enough to impede the robot
- Our approach achieves significantly shorter completion times for object densities values between 0.3 and 0.8

Ongoing Work

- Learn clutter distributions for individual environments
- Learn the cost function for the specific navigation capabilities of the robot
- Humanoid autonomously decides whether to move through only partially observable, cluttered region, or take a path around it

Conclusions

- Real-time map segmentation and footstep planning in 3D at low CPU cost
- Reduced planning time compared to A* with fixed footstep sets
- Lower path costs due to adaptive node expansion
- Prediction of obstacle occurrences and corresponding navigation costs
- Avoidance of regions predicted to be too cluttered leads to shorter completion time

Thank you!