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Robots in Human Environments 

Need to navigate through  
challenging passages with 

§  Objects blocking the path 

§  Highly cluttered regions 

§  Different levels 

§  Dynamic obstacles 



Requirements 
§  Fast sensor data interpretation  
§  Real-time footstep planning 
§  Reactive balance and dynamic walking 

control 
 



Our Approach 
§  Fast traversability analysis from depth data  

§  Avoidance of local minima by finding 
complete 3D footstep plans to local goals 

§  Real-time planning and replanning in case 
of sudden changes  

§  Only low CPU usage 



Related Work 
§  Footstep planning using rapidly-exploring 

random trees (RRTs), e.g., Baudouin et al. 

§  Mixed integer optimization on convex 
regions, e.g., Deits et al. 

§  A* footstep planning using fixed footstep 
sets, e.g., Hornung et al., Chestnutt et al. 
 
 



Footstep Planning with A* 
§  Uses a set of footstep actions to reduce the 

computational demand  
§  Standard approach: fixed set of actions 
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Footstep Planning with A* 

Small set à  

Large set à 

fast planning 
limited search space 

large coverage 
long planning time 



Adaptive Node Expansion 
Our approach: 

§  Add only a small set of nodes at each 
expansion step 

§  Systematically search for valid successors 
§  Apply fast validity checks using height 

information 

§  Leads to a high success rate, short 
paths, and fast planning times 



Cost Functions 
 
Cost function g: 
 
 
 
 
Heuristic cost h: 
Cost of the direct path to 
the goal using maximum 
step length 
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Field of View 



Planar Region Segmentation 



Finding Edges 



World Representation 

Karkowski et al., ICRA 2016 



Reachability Map for Footsteps 
§  Discretization of feasible footsteps 
§  Reachability map can be precomputed using 

inverse kinematics  
§  Maximum displacement from the previous 

step, depending on the displacement 
direction 

§  Maximum displacement along the upward 
and downward directions 
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A* with an Adaptive Action Set 
§  Local search around maximum forward step 
§  Validity checks:  

§  Footstep feasible according to the 
reachability map? 

§  Footstep on a planar region? 
§  Later: No collision of the robot’s swept 

volume with obstacles? 
§  Result: set of viable successor states that 

adapt to the local environment 



Node Expansion 



Node Expansion 



Node Expansion 
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Experiments 

§  Planning area of 2.4m x 2.4m, 
randomly generated obstacles 

§  Resolution of 1.5cm for the 
height map 

§  Local goal located at the opposite 
side on the map  

§  Comparison to A* with fixed sets 
of 10 and 20 footsteps 

§  Computations performed on 
single Intel Core i7 3770 CPU 



Example Map 

    A* (small)          A* (large)        Our approach 
start start start 

goal goal goal 
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Further Examples 
      A* (small)        A* (large)     Our approach 

start start start 

goal goal goal 

start start start 

goal goal goal 

map 1 

map 2 



Experimental Results 

Map 1 A* (small) A* (large) Our approach 
Planning Time 85.7 ms 60.3 ms 14.3 ms 
Path Cost 7.6 4.0 3.7 
Expanded Nodes 28260 13835 1516 

Map 2 A* (small) A* (large) Our approach 
Planning Time 67.2 ms 75.0 ms 48.7 ms 
Path Cost 6.9 5.0 4.3 
Expanded Nodes 22374 16805 5852 



Real-Time Footstep Planning 

Karkowski et al., Humanoids 2016 



Real-Time Footstep Planning 2D 



Navigation through Cluttered 
Regions 
Typically, objects appear in clusters: 
§  Children’s rooms with toys on the floor 
§  Workshops with tools lying around 
§  Storage rooms with piles of boxes 
 
Challenges 
§  Accurate sensing of obstacles 
§  Precise motion execution 
§  Obstructed view of the sensor 



Navigation through Cluttered 
Regions 
Leads to 
§  Decreased velocity 
§  Frequent turns 
§  Potentially getting stuck 



Our Approach 
§  Choose efficient paths by avoiding regions 

predicted to be too cluttered 
§  Predict the occurrence of objects 

beyond observed areas 
§  Estimate navigation costs corresponding to 

potential obstacles to navigate foresightedly  
§  Achieve shorter completion time of 

navigation tasks 



Occupation Density and Costs 
§  Estimate occupation densities for  

2D grid cells based on observed objects 
§  Increase the traversal costs for cells in 

close-by regions that are not yet visible 
§  Plan the robot’s global 2D path on a cost 

grid map that contains: 
§  Standard inflation costs around obstacles 
§  Predicted costs from estimated occupation 

densities 



Estimated Occupation Density 



Estimated Occupation Density 



Estimated Occupation Density 



Estimated Occupation Density 

Estimate the density    inside circle 



Estimated Occupation Density 

predicted navigation costs: 



Cost Grid Map 



So far: Tested on Wheeled Base 

Robotino robot, 
Festo Didactics  ASUS Xtion Pro Live  

for object detection 

laser scanner for 
localization 



Regier et al., IROS 2016 

Foresighted Navigation 



Experimental Evaluation  
§  Extensive simulation experiments 
§  Randomly sampled objects within a 

rectangular area of size 23 × 8 m2 
§  Obstacle density as a parameter: average 

number of objects per 1 m2 
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Results 

§  The behavior is different when the clutter  
§  is sparse enough for the robot to fit through 

§  but dense enough to impede the robot 

§  Our approach achieves significantly shorter 
completion times for object densities values 
between 0.3 and 0.8 



Ongoing Work 
§  Learn clutter distributions for individual 

environments 
§  Learn the cost function for the specific 

navigation capabilities of the robot 
§  Humanoid autonomously decides whether  

to move through only partially observable, 
cluttered region, or take a path around it 



Conclusions 
§  Real-time map segmentation and footstep 

planning in 3D at low CPU cost 

§  Reduced planning time compared to A* with 
fixed footstep sets 

§  Lower path costs due to adaptive node 
expansion 

§  Prediction of obstacle occurrences and 
corresponding navigation costs 

§  Avoidance of regions predicted to be too 
cluttered leads to shorter completion time 



Thank you! 


