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Why HRI: more and more collaboration

Ordinary people

Human end-
user

Skilled operator

An kne mode of collaborative robots with human
mzm%demRm isbarg, Ohio)

>

Robots ~ Autonomous Robots ~
machines decisions like humans



Why HHI: more and more humanoids

More human-like shape
More sensors

More complexity

More tasks

More versatility

- X
More interaction with non-experts = T L d
> e = .
.// ' } i
S ‘

""“. K oS Robots ~
P like humans
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AR s N tasks

high expectations

| task
machines low expectations




Problems (some)

ACCEPTANCE

SOCIAL INTERACTION PHYSICAL INTERACTION

From the movie “Robot and Frank™ (2012)



Problems (some)

ACCEPTANCE

UTAUT model, Venkatesh et al (2003) Trust in automation model, Schaefer et al. (2016)

* These questions may sound atypical (~psychology) or far from Al & robotics
=> wrong! The humans are the final end-users of our Al technology

* Classical models of technology acceptance and trust not adequate for the

robotics case
=> lack of quantitative data supporting models

=> need to do experiments



Experiments (some)

ACCEPTANCE TRUST

Marichal et al (2016), Malaisé et al (2016) Int. Conf. Soc. Robotics  Gaudiello et al (2016) Computers in Human Behavior

* The control interface is part of the * General distrust towards robots.
robot * People trust more the robot for
* Must be easy to use by non-experts its functional savvy than its social
* Performance in using an interface is SavVvy.
not the primary criteria for adoption * Very frequently, people disagree
* Expected improvement, learning and with the robot even if they think

playfulness play a key role. it’s right.



HRI methodology

Subjective / | Measure Joystick  GUL | Wilcoxon Questionnaires and
° ° ()bjl'l't".'(' ° ° ° °
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These two components explain 60.06 % of the point variability.



Problems (some)

S

':A‘\. .
7—‘_/- —

COLLABORATION

SOCIAL INTERACTION PHYSICAL INTERACTION

From the movie “Robot and Frank™ (2012)



Problems (some)

* Interaction = a problem with uncertainty:
* robots do not always have buttons
* what can they do?! when? what is their goal/task?

* People behave differently => personality, individual factors
* Haptic information alone is not sufficient to discriminate intent of motion in
physical human-robot collaboration (Dumora et al 2012)
=> multimodality

SOCIAL INTERACTION PHYSICAL INTERACTION

From the movie “Robot and Frank™ (2012)
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Ordinary people teach iCub how to assembly an object

56 participants (19 M, 37 F), ag
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Studying human-robot collaborative assembly

verbal/non-verbal signals

individual
' characteristics




Social signals, e.g., gaze

- 3D People Face Pose
Tracking Trimming Estimation

Information about
object of interest

P

RGB.D Sensor (

A AN
oy =
.

Head Pitch (deg)

A
’

Object on .4 _
the left Object on
the right

B

&
== (CubRobot

Ivaldi et al, Frontiers in Neurorobotics, 2014

Object on
the center

-10 10 30 50 70
Head Yaw (deg)

Human Parner




Physical signals, e.g., contact forces

Inertial sensor

F/T sensor ‘ ? "’"5:'/".-\5?{; * ‘

lvaldi, et al. Droniou et al, RAS 2015,
HUMANOIDS 201 | Stulp et al, HUMANOIDS 2013



Individual factors, e.g., extroversion and NARS

Both attitudes and personality traits influence our actions
and behaviors, together with other social, contextual and

individual factors.

Personality:
behavior patterns, stable in adults

=3 Low Scorers High Scorers
Down-to-earth Imaginative
g
1 O Uncreative Creative
enness o | >
P Conventional Orniginal
Uncurious Curious
>N Negligent Conscientious
U ’ ) k y
= 2 C y : Lazy Hard-working
2 SONSClentiousness 3 :  — Y
o] Disorganized Well-organized
& Late Punctual
(7, L oner lomer
. ulet Talkative
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Q Extraversion Passive Active
(ol , .
= Reserved Aftectionate
LN
U, Suspicious frusting
s 4 Aorecablinass Critical Lenient
o dzanenlc Ruthless Soft-hearted
Irritable Good-natured
Calm Waorried
5 Neuroticism f_wn Ilem;wwd !(‘I)Y[K'r.lnh'nl.ll
Comfontable F— Self-conscious
Unemotional Emotional

McCrae, R.R,, & Costa, PT. (2003)

Attitudes:
behavior tendencies,
contingent, may change

Negative attitude towards robots
NARS

Negative attitude toward situations and
interactions with robots

Negative attitude toward social influence
of robots

Negative attitude toward emotions in
interactions with robots

Nomura et al (2004)



Individual factors appear in the interaction

This one...

Make it so
that they
touch each
other.

lvaldi, S.; Lefort, S.; Peters, ].; Chetouani, M.; Provasi, ].; Zibetti, E. (2016) Towards engagement models that consider
individual factors in HRI: on the relation of extroversion and negative attitude towards robots to gaze and speech
during a human-robot assembly task. Int. Journal Social Robotics




Results and observations

= average duration: !
246 sec (=4 min)

4

Most relevant results:
* Extroverts talk more
* Negative attitude towards robots:
- avoid gazing at the robot’s face
- apply bigger forces
* Older people apply smaller forces
* Learning effect in only 3 trials:
- smoothness
- forces

Important observations:

» different strategies/behaviors

* a lot of variability in the recorded
trajectories during haptic exchange

lvaldi, S.; Lefort, S.; Peters, J.; Chetouani, M.; Provasi, |.; Zibetti, E. (2016) Int. Journal Social Robotics



... the robot can adapt its policy to each human partner

individual factors, contexts,
l personality traits & attitudes

intention, goal predictio

movement prediction| Human behavior parameters
' model to identify
i 11
parameters -
! to optimize delay
’|  Human
51 [N actions/signals
robot 7 (force; gaze, ..) ,
NOISE,
goals delay

measurable signals
(posture, force, gaze..)

LV >

21



Part 2:
Learning for damage recovery

Jean-Baptiste
Mouret

jeanbaptiste.mouret@inria.fr

Humanoid and Legged Robots - HLR 2016
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The issue with robots is not that they fail & break...
... it is that they do not get back on their feet and try again

[If something unexpected happens, the mission is aborted!]

24
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Controller : periodical signals (36 parameters)

Performance: covered distance in 5 seconds
Performance evaluated onboard (RGB-D visual

odometry)

-

< -
3
s
T

Forward Speed (m/s)
0.25

Trajectory




What can we do!

The medical approach:

: expensive (sensors
diagnose the problem P ( )

need to place the sensors "at

try to fix it the right place” = anticipate







Micro-data learning

A4
:0¢ AlphaGo
30 million positions
+ self-play

S L LB DB L LS AL

« Big Data » ﬁ « Micro data »

38 days Amount of data 1-20 trials
of learning
Deep learning !

Learning with
robots

28



Five precepts for micro-data learning

Choose wisely what to test next (active learning)
= OK to trade data resources for computational resources
Know what you know

= Take the uncertainty into account when selecting what to test

Use prior knowledge
i. use an easy search space (possibly, design it automatically)
ii. make prior knowledge explicit

iii. use everything we know (e.g. simulator of the intact robot)

4. Exploit every bit of information from each test

= e.g., use all the points of a trajectory

5. Only learn what is necessary

= e.g, do not reinvent control theory

All this precepts should be combined
JB Mouret. Micro-data learning: the other end of the spectrum. ERCIM News. 2016 29
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Two main ideas: ~ Cully, A., Clune, J. , Tarapore, D.
generate priors with a simulation of the intact robot = wewmwe  and Mouret, J.-B.

choose the next trial using Bayesian optimization g Fiobots that can adapt like animals.
Nature. Vol 521 Pages 503-507.

(i.e. take uncertainty of predictions into account) L (2015).




Trial & error damage recovery in ~10 trial
but...

- This is episodic learning: the robot is reset after each trial
= |learn without reset
= ... while taking the environment into account (obstacles)
= “learn while doing”: trials useful for the task

* We know a dynamics simulator of the intact robot & the environment
* We don’t know the damage (could be anything)




Results of MAP-Elites

Action Repertoires

x displacement
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36 parameters " 1500 good controllers in a 2D space

Performance: does the robot follow a circular trajectory?

Learn with a simulation of the intact robot

2 meters
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Breaking the complexity: pre-computing a repertoire

Multi-dimensional Archive of Phenotypic Elites

B (Evaluation in)
Random simulation
parameters
variation
T L i y
andom If empty or
selection better,
in archive replace

_~ Elite
ol

Pre-Processing in
simulation

Goal: find many good alternatives
um The elites of the search space

@)

N

Current best \
solution

Encountered
solutions

Performance
Behavioral
archive

Not random sampling at all: you
do not find good walking
controllers “by chance”

s

Mouret, J.-B., and J. Clune. "llluminating search spaces by mapping elites." arXiv preprint arXiv:1504.04909 (2015). 33



... but the repertoire needs to be corrected

Learn a modification of the repertoire with a Gaussian process
(one GP for each dimension — x, y)

[ simulation (known)
P(f(x)lpl:t-!-l)a X) = N()U'H-l(x)a Ut2+1(x)) O
where O \
pe1(x) =PRAEE) + K K™ (P1.s1 — V) o~ Y ldamage
o2, (x) = k(x,x) — k'K~ 1k S JIN|

) k(y17y1)+arzzoise k()’hyt) 8_ I \
K = : %, :

| (unk )

s k(yta yl) il k(yt) yt) + agoise L t;eeahalilr:ocg,

k = [ k(xayl) ]{I(X,yz) k(xayt) ] ‘ ' ‘ '

without the with the
broken part(s) broken part(s)
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What to try next!?

This is a planning problem (with uncertainty because of the GP)
=+ can be solved with Monte Carlo Tree Search (MCTS)

value = 6.

obstacle

Use Monte-Carlo rollouts to evaluate the probability distribution of value of each behavior / policy

l.

2. Choose the most interesting action / policy
3. Run it on the robot

4. Update the models (GP), which reduces the uncertainty & improve predictions
5

35



Reset-freeTrial & Error (RTE)
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Damages

# of steps per target

Does learning help?

30
25
20
15
10

40
35
30
25
20
15
10

70
60
50
40
30
20
10

repertoire #1

repertoire #2 repertoire #1

_ Performance .
D Environment #1 E Environment #2
: = — &
FE T -
: - g —
e 4 = =
kkkk . I—L _—
4 - 4 '
RTE MCTS RTE MCTS RTE MCTS RTE MCTS
MAP-Elites MAP-Elites MAP-Elites MAP-Elites

repertoire #2
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Conclusion

No need to model a damage to continue the
mission!

Reset-free damage recovery
... on a“complex” robot / policy (36
parameters to learn)
in a few minutes
.... with reasonable computation times (< 30 s)

=+ a “realistic scenario” for damage recovery

Future work
= humanoid robots (iCub)

= include safety constraints (cf Paspaspyros et al.
NIPS Workshop 2016)
= use trajectories to improve predictions (use

more from each trial)

Papaspyros V, Chatzilygeroudis K,VassiliadesV, Mouret |B. Safety-Aware Robot Damage Recovery Using Constrained Bayesian
Optimization and Simulated Priors. Proc. Of the NIPS workshop on Bayesian Optimization. 2016 38



Acknowledgements

R. Calandra (TU Darmstadt), K. Chatzilygeroudis (Inria), |.
Clune (U. Wyoming), A. Cully (Imp. College), M. P.
Deisenroth (Imp. College), L. Natale (lIT), E Nori (IIT), |.
Peters (TU Darmstadt), D. Tarapore (U. Southampton), V.
Vassiliades (Inria), E. Zibetti (Paris 8)

= UNIVERSITE
i LOriQ DE LORRAINE

SEVENTH FRAMEWORK BRI g gy e
PROGRAMME SAICHE LB

Europe_an. European Union funding
Commission for Researc h & Innova tion

39



Thank you!
Questions !

CHARLES IS FOLLOWING THE EXPERIMENT
FROM THE COMPUTER, WHILE I AM HOLDING

THE RED BUTTON: IF SOMETHING GOES THE ATOMIC WAR IN
WRONG, I PUSH IT AND I SHUT DOWN SOME SENSE.. EHM..
EVERYTHING.

SeNlonde

Comics by Fiamma Luzzati - Le Monde - April 2014



