

Engineering humanoids that grasp, learn from human and experience, and perceive time

Tamim Asfour

http://www.humanoids.kit.edu

Institute for Anthropomatics and Robotics, High Performance Humanoid Technologies

On Dualities, Force and Time in Robotics

Tamim Asfour

http://www.humanoids.kit.edu

Institute for Anthropomatics and Robotics, High Performance Humanoid Technologies

My team

Chiara's robot Tomy

- **Tomy:** 1200 parts , 7 motors, 250 EURO
- Tomy assembled by Chiara
- Chiara: 9 years old
- Tomy's skills: speech interface, kinesthetic teaching, annotating motions sequences via speech, control via smart phone, upper body tracking and imitation, ... lots of fun!

Humanoids in the real world

Engineering Humanoids

Grasping and manipulation

Learning for human observation

© SFB 588

Natural Interaction and communication

ARMAR-III in the RoboKITchen

45 minutes, more than 2000 times since February 3, 2008

Combining action, vision and haptics for grasping

Initial object hypotheses

Generate hypotheses based on Color, Geometric primitives and Saliency

Hypothesis 49 is chosen for verification by pushing

The ARMAR Architecture (inspired by Xperience)

High-level:

Natural language understanding, reasoning and planning

Mid-Level:

MemoryX: mediator ^{le} between sensorimotor data and symbolic knowledge

Low-Level:

- Execution
- Hardware Abstraction
 Layer (HAL)
- ArmarX-YARP bridge

Task execution with OACs

- OAC library as part of long-term memory
- Each OAC consist of
 - lD
 - Specific parameters
 - Preconditions for planning
 - Effects
 - Link to a hierarchical statechart
 - statistics about execution
- Instantiated OACs in the working memory for the current task

NLU, Planning and Bootstrapping mechanisms

The ArmarX Software

- Event-driven component-based robot software development environment
- Open Source robot software development environment

Code and documentation

- Source code: https://gitlab.com/ArmarX
- Documentation: <u>https://armarx.humanoids.kit.edu</u>

Loco-manipulation tasks on WALK-MAN

Semi-public demo at project review
 MultiSense SL stereo camera

What's next?

- SecondHands: A robot assistant for industrial maintenance
 - 5 years project in Horizon 2020 (2015 2020)
 - Ocado, KIT, Sapienza, EPFL, UCL
- Provide help to maintenance technicians in a warehouse environment
- Advancement in the automation of the relatively unexplored domain of production machine maintenance
- Reduction of production machinery maintenance costs

ARMAR robot technologies in warehouses

Joint	Max. Torque	speed
1	176 Nm	79°/s
2	176 Nm	79°/s
3	176 Nm	79°/s
4	100 Nm	132°/s
5	100 Nm	132°/s
6	100 Nm*	132°/s
7	34 Nm	206°/s
8	34 Nm	206°/s

ARMAR robot technologies in warehouses

Maintenance objects/tools

- Object/tools models
 - AllanKey.xml
 - AllanKey2.xml
 - AllanKey3.xml
 - Cutter.xml
 - Flashlight.xml
 - Screwdriver-Red-smaller.xml
 - Screwdriver-cross.xml
 - Wrench.xml
 - Pliers.xml
 - ...

See KIT object database http://object-database.humanoids.kit.edu

Learning from human observation

Reproduction of wiping DMPs encoding a transient and a periodic pattern on ARMAR-IIIb

Learning from observation – prepare the dough

KIT whole-body human motion database

https://motion-database.humanoids.kit.edu/

The KIT whole-body human motion database

$mocap \rightarrow MMM \rightarrow robot model \rightarrow real robot$

ARMAR-IV: Mechano-Informatics

- Torque controlled
- 3 on-board embedded PCs
- 76 Microcontroller
- 6 CAN Buses

63 DOF

- 41 electrically-driven
- 22 pneumatically-driven (Hand)

238 Sensors

- 4 Cameras
- 6 Microphones
- 4 6D-force-torque sensors
- 2 IMUs
- 128 position (incremental and absolute), torque and temperature sensors in arm, leg and hip joints
- 18 position (incremental and absolute) sensors in head joints
- 14 load cells in the feet
- 22 encoders in hand joints
- 20 pressure sensors in hand actuators

...

ARMAR-IV

- 63 DOF
- Torque-controlled!

Multi-contact active compliance balancing controller

Duality

Duality - Boolean Algebra

$egin{array}{ccc} \wedge \leftrightarrow \lor & 0 \leftrightarrow 1 \ a \leftrightarrow a & \overline{a} \leftrightarrow \overline{a} \end{array}$

$$a \wedge a$$

The duality of grasping and balancing

Equilibrium is reached by balancing similar sets of forces

The duality of grasping and balancing

Concepts of grasping can be applied to loco-manipulation

$$\mathbf{G}^T \mathbf{T} = \mathbf{J}_H \dot{\Theta}$$
$$\mathbf{J}_H^T \lambda_f = \tau$$
$$-\mathbf{G} \lambda_f = \mathbf{W}$$
$$\lambda_f \in \mathscr{F}$$

Balance \iff Stable grasp

Step planning \iff Grasp synthesis

Applications of grasping taxonomies

- Benchmark to test robot hand abilities
- Simplify grasp synthesis
- Inspire hand design
- Optimization of synergies: Formulation of dexterity/functionality as number of achievable grasps for maximization
- Guide autonomous grasp selection

Taxonomy of whole-body poses

Total: 46 classes

Borras and Asfour, IROS 2015

Taxonomy of whole-body poses

Taxonomy of whole-body poses

Validation of the taxonomy

- Analyses of different human locomanipulation tasks with supports
- Reference model of the human body (Master Motor Map: MMM) with 104 DOF
- Motion capture data mapped to reference model of the human body (MMM)
- Automatic segmentation to detect support poses and transitions
- Automatic generation of a taxonomy of the poses and their transitions in the motion data

Analysis of pose transitions

Analysis of whole-body loco-manipulation tasks

Data-driven validation of the taxonomy

- Total of **121** motions processed
 - Locomotion
 - Upstairs/downstairs with handle
 - Walk with handle
 - Walk avoiding obstacles using hand supports
 - Loco-manipulation
 - Lean to reach/place/wipe
 - Bimanual pick and place of big objects
 - Balancing
 - push recovery
 - recovery due to lost balance
 - Kneeling motions
- 4,5% of poses missed (all double foot supports (the looping edges))

Whole-body motion based on the taxonomy

n-gram language model: Statistical approach to learning conditional transition probabilities between whole-body shape poses

Software and documentation: MMM, Motion DB

KIT Whole-Body Motion Database

https://motion-database.humanoids.kit.edu

MMM:

- https://gitlab.com/mastermotormap/mmmcore
- <u>https://gitlab.com/mastermotormap/mmmtools</u>

Dokumentation:

- http://mmm.humanoids.kit.edu
- https://motion-database.humanoids.kit.edu/faq

KIT Object database

http://h2t-projects.webarchiv.kit.edu/Projects/ObjectModelsWebUI/

Lessons learnt in 16 years

Robotics is the science of integration

The "X" in robotics

- It is not the "X" in Self-X (self-organization, self-repair, self-refinement, ...)
- It is not the "X" in Co-X (co-habiter, co-worker, co-protector, ...)
- It is not the state variable in dynamical systems

Unfortunately, it is the value by which we have to speed up robot movies to make robots behave/move in a human-like way

X > 1

It's all about Force

Force

Role of force

- Force is key element for interaction with the physical world.
- Human infant motor control studies also indicate that early manipulation relies on contact and force, with other senses being incorporated in control later in the development.

Claim:

- Objects, agents and their actions can be described based on a new concept of sensorimotor force fields (SFF) that provides a unified representation and computational mechanism for solving robotics tasks (grasping and manipulation, balancing, ...).
- SSF result from the integrated mapping of action and sensory modalities such as position, pressure, tactile, audio and vision sensory data to the **force space**.

Action and agent

Action

- Action represented by the force fields that generate it
- Dynamic systems; attractor landscapes

Agents = Embodiment

- Sensorimotor maps of the body schema; tool use
- Based on proprioception (and vision and haptic)

Perception - Physical laws

Duality between force and position has been demonstrated in the robotics in the form of position-force control mechanisms (Newton's law)

 $F = m \cdot \ddot{x}$

 $F = A \cdot P$

- Pressure is the amount of force acting perpendicularly per unit area
- Haptic: contact, pressure, proprioception, temperature, vibration
 - Superposition ?
- Audio: loudness proportional to force (e.g. knocking)

high-frequency

rom amplifie

sound waves acoustic output

Perception - Physical laws

- Vision
 - Depth \rightarrow position
 - Colors
 - Intensity
 - Saliency
 - Attention
 - Motion → see action
 - Shape features
 -

Sensorimotor Force Fields (SFF)

From X to force and torque! From pixels, voxels, taxels, ... to forces and torques

SFF - force4all

■ Co-joint Object-Action representation in the force space (force-based OACs) → Robot "machine code" in the force space

Research questions:

- Definition of laws and rules for mapping of different sensory modalities into SFF.
- Mathematical and algorithmic modeling of SSFs.
- Operators and arithmetics for SFF: interaction of different SSFs resulting from different sensory modalities or action.
- Formulation of robotics tasks based on the SSF representation
- Compilers from natural language task description to the force space
- Which robotics tasks? Grasping, Balancing, ...

- Mental forces
- Logical forces
- Theoretical forces
- Physical forces

Force in Japanese culture

Force-based Human-EXO interface

Feel the muscle activation (non invasive)

Learn human-suit interaction force pattern and use them for motion prediction

ARMAR-5: Interface to the human body

Other examples

SFFs for grasp recognition and reproduction

- A. Kheddar (CNRS/LIRMM) and A. Argyros (FORTH)
 - Towards Force Sensing From Vision: Observing hand-object interactions to infer manipulation forces, CVPR 2015

Gentiane Venture

Emotion recognition based on force

- It is not only about the an EXO interfaces
- It is not only about physical forces (contact forces,)
- It is about the force space as unifying representation for sensorimotor experience and cognitive capabilities

Time

Time is vital

TIMESTORM

An EU FET-ProActive Project

Knowing

- Knowledge hierarchies
- Episodic memory (what, where, when), forgetting
- Time-based: Past recall, future imagination

Doing

- Short-term: Fluency in HRI (e.g. turn taking)
- Long-term: constraints in action planning, habits.
- Multiple tasks coordination

Being

- Self identity over time
- Low level consciousness: perceive internal, environment changes
- High-level consciousness: link self to historical times

Time in Robotics

Time is fundamental for the implementation of episodic memories

KIT Manipulation Action Dataset

In total 70 demonstrations of 8 different manipulation actions

Level I : Semantic Segmentation

Level II : Motion Segmentation

Hierarchical Segmentation No Contact Bowl in hand No Contact Hand-Object Relation: **Object-Object Relation** Approach Lift-up Place Release Withdraw $\sqrt{}$ 1000 800 600 Position in mm 400 200 0 -200 -400 -600 0 1 2 3 4 5 6 Time in seconds **Trajectory of the Bowl**

Perception of Time: Put-on Action

Perception of Time: Human Demonstration

Perception of Time: ARMAR-4 Imitation

Perception of Time: Psychological Experiments

- Psychological experiments support our new semantic action segmentation hypothesis
- Collaboration with the University of Groningen (Hedderik van Rijn, Experimental Psychology & Statistical Methods and Psychometrics)

Schlichting al. "Temporal Context Influences the Perceived Duration of Everyday Actions", Under Review, 2016

Temporal Scaling

Breakthroughs in robotics since ~2000 – my view

Progress driven by

"Cool" new hardware

Robot mechatronics: DLR/KUKA LWR, NAO, UR, iCub, youBot, FRANKA EMIKA, ...

Sensors: Kinect, ...

Computing power: many-core systems, GPUs, ...

Large amount of data (thanks to better hardware)

Thanks to ...

German Research Foundation (DFG)

- SFB 588 www.sfb588.uni-karlsruhe.de (2001 2012)
- SPP 1527 autonomous-learning.org (2010)
- SFB/TR 89 www.invasic.de (2009)

European Union

- IMAGINE
- (2017- 2020)
- SecondHands
- TimeStorm
- I-Support
- Walk-Man
- KoroiBot
- Xperience
- GRASP
- PACO-PLUS
- www.timestrom.eu (2015-2018) www.i-support.eu (2015-2017) www.walk-man.eu (2013-2017) www.koroibot.eu (2013-2016)

www.secondhands.eu (2015-2019)

- www.xperience.org (2012-2015) www.grasp-project.eu (2008-2012)
- www.paco-plus.org (2006-2011)

Federal Ministry of Education and Research (BMBF)

INOPRO (2016-2021)

Karlsruhe Institute of Technology (KIT)

- Professorship "Humanoid Robotic Systems"
- Heidelberg-Karlsruhe Research Partnership (HEiKA)

European Commission

Federal Ministry of Education and Research

Thanks for your attention

May the force be with you!

